

School of Interdisciplinary Engineering & Sciences (SINES) Defining futures National University of Sciences & Technology

Course Title: Computational Immunology

Course Code: BI-851

Course Objective:

Primary focus of the program under which the proposed course will be conducted is

- To analyze immune systems Strategies to find desirable genes and proteins for their application in infectious diseases and host responses.
- Analysis of Antibody-antigen-MHC interactions.
- Comparison of patients with autoimmune responses or diseases.
- Computational prediction of graft rejection for particular donor/recipient pairs.
- Computer modelling in an attempt to understand the processes of adaptive cellular cancer immunotherapy.
- The results of these analyses may be incorporated into peer reviewed publications part of the student thesis/research projects

Course Outcome:

After the course the students will be able to apply different concepts of Computational Immunology on various practical problems.

Course Contents

- ☐ Introduction to Computational Immunology
 - Use of Bioinformatics in immunology
 - o Applications of Computational Immunology
 - o Immunomics
- □ Various tools and algorithms
 - Structure-based prediction
 - o Prediction using other machine learning methodologies
 - o Prediction through matrix-driven methods
 - o Prediction methodology for discontinuous B-cell epitopes
 - o Prediction using machine learning methodologies
 - o Predicting Virulence Factors of Immunological Interest
- □ Various datatypes and databases
 - o Interpretation of Experimental data and applications
 - o Immunomic microarray technology and analysis
 - o B-cell epitope databases
 - o T-cell epitope databases
 - Allergy prediction databases
 - o Databases related to molecular evolution of immune genes and proteins

	Computational modelling and simulation of the immune system.
	 Visual modelling and simulation of adaptive immune system.
	 Existing Immunological models.
	 Pathways comparative analysis and reconstruction
	Structural Computational Immunology
	 Modelling of proteins having important role in immune systems pathways
	 Important Protein-Protein interactions generating immune responses.34
	 Protein-Peptide Interactions analysis to identify therapeutic targets
	 Computational Docking of Antibody-Antigen Complexes
	System approaches in Computational Immunology
Re	commended / Reference Books:
	Flower, Darren R., ed. Immunoinformatics: Predicting immunogenicity in silico. Springer Science
	& Business Media, 2007.
	Bassaganya-Riera, Josep. Computational Immunology: Models and Tools. Academic Press, 2015.
	Castro, Leandro Nunes, Leandro Nunes De Castro, and Jonathan Timmis. Artificial immune
	systems: a new computational intelligence approach. Springer Science & Business Media, 2002.
	Lund, Ole, et al. Immunological bioinformatics. MIT press, 2005.
	Latest Research papers from the domain of Computational Immunology, other Internet resources
	and lectures.